
ITERATIVE CT RECONSTRUCTION OF REAL DATA
WITH METAL ARTIFACT REDUCTION

Benoit Hamelin∗, Yves Goussard∗, David Gendron∗, Jean-Pierre Dussault†,
Guy Cloutier‡, Gilles Beaudoin‡ and Gilles Soulez‡

ABSTRACT

We present an iterative tomographic reconstruction procedure suit-
able for processing of real projection datasets. This method is based
on a polychromatic sinogram formation model that takes the beam
hardening effect into account and thus reduces the incidence of
streak artifacts due to metal inserts in the imaged body. It involves
an optimized implementation and a novel measurement uncertainty
model aimed at improving the conditioning of the problem and
reducing the runtime of each iteration.

Reconstruction of realistic-size images was performed on both
synthetic and actual projection data. Comparison with results pro-
vided by existing techniques indicates that a significant reduction of
the runtime is achieved, with no loss in image quality.

Index Terms— Computed Tomography, Metal Artifacts, Penal-
ized Likelihood, Real Data, Statistical Modeling.

1. INTRODUCTION

We take interest in the minimally-invasive measurement of the lumen
of peripheral vessels that may suffer from atherosclerotic stenosis or
post-angioplasty restenosis. We favor the use of X-ray CT, for its
high resolution. However, the reconstructions are altered by streak
artifacts because of the presence of metallic endovascular stents de-
ployed during angioplasty. Metal screws and prosthesis may also
cause such artifacts. Thus, there is a need for a reconstruction pro-
cedure that reduces metal artifacts while preserving high image res-
olution, for large datasets such as acquired from actual CT scanners.

In this respect, techniques based upon filtered backprojection
(FBP) algorithms applied to preprocessed sinograms (such as those
implemented in actual scanners) do not sufficiently reduce streak ar-
tifacts. We are then lead to an offline iterative reconstruction ap-
proach hinged on penalized likelihood maximization, such as those
developed by [1, 2]. This family of reconstruction algorithms allows
flexible modeling of the sinogram formation and of the statistics of
projection uncertainty. Our work is based on the IMPACT algo-
rithm developed in [1], which relies on a concise two-image poly-
chromatic representation of the attenuating object. The IMPACT
algorithm was later extended into a two-stage semi-automatic proce-
dure that completely eliminates metal artifacts [3]. The concurrent
approach [2] represents the attenuation object as a set of material
mixture maps. Reconstruction is performed by maximization of the
likelihood [1] or the penalized-likelihood [2] function based on iden-
tically distributed models of data uncertainties. The same model was
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used in [4] for preprocessing the sinogram, taking in account multi-
ple artifact sources.

The procedure described in [1] presents the disadvantage of
a heavy computation cost when working with large images and
datasets. We hereby contribute a modified reconstruction algorithm
that decreases the per-iteration cost by an optimized implementation
of the projection operator and a region-of-interest approach. In
addition, we improve the numerical conditioning by an alternative
projection uncertainty model, leading to the execution of fewer it-
erations to converge. On commodity hardware, the runtime of the
resulting algorithm is reduced by almost one half for sinograms
acquired at a normal dose, and by about one third for sinograms
acquired at a lower dose.

2. STATISTICAL MODELS FOR SINOGRAM
UNCERTAINTY

2.1. CT reconstruction with polyenergetic sinogram formation

The use of a polychromatic sinogram formation model is motivated
by accounting for the beam hardening effect that leads to metal
streak artifacts. When an X-ray beam traverses a strongly attenu-
ating object (such as a metal insert), its low-energy photons have
a greater absorption probability compared to its much rarer higher-
energy photons. These add up to counts with significant differences
from counts expected under a monochromatic source hypothesis.

This effect can be modeled by representing the object under in-
vestigation by a set of attenuation maps at K > 1 energy levels.
Considering the attenuation over each ray-path as a discrete Beer-
Lambert integral, the discrete sinogram normalized by total photonic
intensity can be expressed as y =

PK
k=1 bk exp[−Aμk] ∈ R

N . We
have N the number of projection angles times the number of detec-

tors on the array, μk ∈ R
L2

the vectorized L × L attenuation map
at energy level Ek, bk ∈ [0, 1[ elements of a discrete approximation

of the emission spectrum of the X-ray source and A ∈ R
N×L2

a
fan-beam projection operator.

The difficulty related to the implied simultaneous reconstruction
of K attenuation maps can be alleviated by the use of the Alvarez-
Macovski decomposition of attenuation maps [1], μk = Φkφ+Θkθ,
with φ mapping the attenuation due to the photo-electric effect and θ,
that due to Compton scattering. In turn, these may be empirically
expressed in terms of the attenuation at a reference energy level μ0

(namely 70 keV), so that deterministic sinogram formation may be
written as

y = P (μ0) =
KX

k=1

bk exp[−A(Φkφ(μ0) + Θkθ(μ0))]. (1)

The number of photons that propagate through an attenuation
medium is adequately modeled by a Poisson distribution that takes
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model (1) as its parameter. The reconstruction may be seen as the
penalized maximum-likelihood estimation of μ0 and expressed as
the solution to the problem

min
μ0≥0

Cp(μ0) + γR(μ0). (2)

The first term Cp(μ0) =
PN

i=1[Pi(μ
0) − yi log Pi(μ

0)] enforces
data adequation with respect to the log-likelihood of the Poisson dis-
tribution. The second term γR(μ0) regularizes this ill-conditioned
inverse problem using the edge-preserving l2l1 [5] penalization of
differences within pixel cliques. The optimization problem (2) is
solved numerically. We experimented both with IMPACT [1], which
we modified to take the l2l1 regularization term in account, and with
L-BFGS-B [6], a bound-constrained limited-memory quasi-Newton
solver that yielded better performance.

2.2. Reducing the runtime

The runtime for solving problem (2) to convergence is excessive be-
cause of the necessity of executing numerous high-cost iterations,
due to poor problem conditioning. Three modifications partially
overcome this difficulty.

2.2.1. Projections and retroprojections

The fan-beam projection operator A is a matrix of dimension N ×
L2, where L2 is the total number of pixels in the image. Despite
its huge size, this matrix is very sparse. We have implemented a
parcimonious storage scheme for this operator that takes in account
symmetries in the projection structure to store down to N/4 sparse
rows.Products Av and AT w are performed using specific routines,
exploiting the structure of each row or column of A, which yield
runtimes lower than those obtained when using off-the-shelf tools
for sparse matrix representation.

2.2.2. Region-of-interest framework

The actual area that we wish to image is a small square patch (of di-
mension about 15 cm) of the full acquired area (dimension 50 cm).
However, the whole area must be considered during reconstruction,
as its truncation severely compromises the conditioning of the re-
construction problem. To avoid using an attenuation map of dimen-
sion greater than 512 pixels, we represent the map using an irregular
mesh, as proposed in [7]. However, this approach has two draw-
backs with respect to our implementation. First, we have observed
poor numerical behavior during initial reconstruction experiments
with simultaneous updates of all pixels of our irregular meshes. Sec-
ond, the choice of the weight γ of the regularization term of (2) de-
pends on the pixel size. The calibration of these weights by manual
methods is then impractical.

These shortcomings are alleviated with the ROI reconstruction
framework we proposed in [8], a simplification of that in [7]. It
involves the representation of the 70-keV attenuation map μ0 by a
coarse background image μ0

b, which covers the whole imaged area
minus the region of interest (ROI), and by a fine ROI image μ0

r ,
which covers only the ROI. The linearity of the projection operator
implies Aμ0 ≈ Abμ0

b +Arμ
0
r , with Ab and Ar being projection op-

erators over the background and the ROI, respectively. For purposes
of comparison with the scanner reconstructions, we encompass the
whole imaged body in the ROI and choose its dimension as 512 pix-
els. This relegates only the table and the surrounding empty space to
the background, which is represented as a 128-pixel map. Of course,

a ROI of smaller extent and lower dimension may be used when tak-
ing interest in small structures such as blood vessels.

The two attenuation maps are reconstructed using the alternative
restriction scheme described in [8], which avoids the numerical dif-
ficulties we mentioned previously. In a nutshell, the whole imaged
object is first reconstructed at coarse background resolution. The
background pixels are then fixed while the ROI is reconstructed at
its fine resolution. Only one regularization weight must be chosen
for each map.

2.2.3. Alternative noise modeling

The poor conditioning of problem (2) leads us to consider a differ-
ent statistical model of deviations from the deterministic sinogram.
Previous works such as [9] were concerned with tomographic recon-
struction under a monochromatic source hypothesis and thus sought

to solve the linear system ỹ = log
“
y/

PK
k=1 b̃k

”
= −Aμ. In [9],

the log-sinogram ỹ is modeled as the realization of a Gaussian distri-
bution and a reconstruction algorithm is derived from the maximiza-
tion of its scaled log-likelihood.

This additive Gaussian noise model over the log-sinogram is jus-
tifiable under the assumption of large average photon counts. In that
case, the Poisson distribution Po(P (μ0)) may be approximated by
the Gaussian distribution N(P (μ0), diag[P (μ0)]), so that we can
write

y = P (μ0) + g,

with g � N(0, diag[P (μ0)]). Hence,

ỹ = log P (μ0) + log
`
1N + diag[P (μ0)]−1g

´
,

with 1N being a vector of N unit entries. Provided that the noise g be
of low power with respect to P (μ0), we have an accurate first-order
approximation of the last term, so that

ỹ ≈ log(P (μ0)) + g̃, g̃ � N(0, Rg̃).

The reconstruction problem derived from maximizing the like-
lihood of ỹ under this alternative uncertainty model only differs
from (2) by the data adequation term, expressed
as Cg(μ0) = 1

2
‖ỹ − log P (μ0)‖2.

This noise distribution may be able to better account for the lack
of precision of the deterministic sinogrammodel (1). Indeed, it omits
multiple artifact sources such as off-focal radiation, detector effects
and electronic noise [4]. Some of these are corrected through sino-
gram preprocessing. Yet, this preprocessing has to be taken into
account explicitly, as it does not yield ideal projections with respect
to model (1). Our opinion is that a Gaussian model of projection
uncertainty is more robust in the face of such incompleteness of the
deterministic model, as shown in section 3.2.

3. EXPERIMENTS AND RESULTS

In the following, we first provide simulation results regarding the
convergence speed of reconstruction using the alternate uncertainty
model. Second, we illustrate the feasibility of ML reconstruction of
real datasets on commodity hardware, as well as the image quality
increase with respect to approaches that are less runtime-intensive,
such as that implemented in the scanner itself.

Due to space constraints, we will not illustrate the efficiency
gained specifically through our projection operator storage, nor
through the ROI framework. The former has an obvious direct
impact on the per-iteration cost. The latter allows us to avoid the nu-
merical difficulties (iteration count in excess of 2000) arising from
the truncation of the reconstructed area.
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3.1. Convergence speed assessment

We first validate the discrepancy with respect to speed of conver-
gence between the three variants of polychromatic-source recon-
struction, using a simulated projection dataset.

The numerical phantom is a simplified model of the physical
phantom with metal inserts described in section 3.2. Its projec-
tions were simulated using a source spectrum model composed of
K = 100 energy levels. High-resolution 2048-pixel attenuation
maps were derived from the material map at each energy level and
their projections were added together. Noise was then incorporated
into the computed sinogram to reach either a log-sinogram signal-to-
noise ratio (SNR) of 35 dB or 25 dB. First, the noiseless sinogram
was used as the parameter for the generation of a Poisson distribu-
tion realization; this yields a SNR of approximately 55 dB. Second,
Gaussian white noise was added to the logarithm of the Poisson re-
alization to reach the required SNR.

Reconstruction of the 512× 512 attenuation map (we don’t use
the ROI framework for this experiment) was stopped when the l∞-
norm of the gradient of the objective dropped below 0.01, which rep-
resents a decrease of four to five orders of magnitude. We calibrated
the regularization weight and l2l1 threshold to obtain equivalent im-
age quality for each dataset. Though we don’t show it here due to
lack of space, for both sinogram uncertainty models, the metal arti-
facts were eliminated, except for tiny shadows around the steel balls.

Figure 1 presents plots of the quadratic reconstruction error
(with respect to the nominal 70-keV attenuation map), as well as
the l∞ norm of the gradient of the objective, over the course of the
reconstructions. For the 35dB-SNR dataset, the minimization of the
penalized Gaussian log-likelihood appears the most efficient: its re-
construction error has the fastest decrease, and so it is for its gradient
norm (albeit its not being monotone, like IMPACT). However, for
the 25dB-SNR dataset, this approach is trumped by the L-BFGS-B
minimization of the penalized Poisson log-likelihood. It seems that
for this dataset, the high signal-to-noise hypothesis formulated in
section 2.2.3 to support an additive noise model for the log-sinogram
is not satisfied. It appears that for low SNR applications, approaches
based on the minimization of the Poisson log-likelihood [4] are
preferable.

3.2. Reconstruction of real datasets

We also present the results of the reconstruction of a physical phan-
tom acquired on a clinical scanner. The phantom was one half of an
hexagonal cylinder hollowed in a circular shape. This pool was filled
with agar gel that mimics the attenuating properties of soft tissues. A
silicone tube was inserted into the gel pool and was filled with a wa-
ter solution of iodine contrast agent at a clinical concentration. Metal
balls were set near the bottom of the pool, on planes perpendicular to
the cylinder axis. We reconstructed slices taken on such planes. The
goal was to accurately delineate the tube of contrast agent solution.

The acquisition was performed on a Siemens SOMATOM Sen-
sation 16 scanner, using one of two axial protocols: SpineSeq,
designed for spine imaging, and InnerEarSeq, designed for in-
ner ear imaging. The latter protocol involves a lower patient dose,
so that the sinograms gathered using it have a lower SNR than those
obtained using the former.

Reconstructions were performed with each algorithm used in
section 3.1. We compared these to the image reconstructed by the
scanner. The latter is a 512-pixel image that maps attenuation over
a 14.4 cm central region. For the other three methods set in the ROI
framework sketched in section 2.2.2, this region is defined as the
ROI and represented samewise. The convergence criterion for these
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Fig. 1. Convergence progress for the reconstruction of simulated
projections with two levels of noise. The solid line represents the L-
BFGS-B minimization of the Gaussian log-likelihood; the dash line,
L-BFGS-B minimization of the Poisson log-likelihood; the dotted
line, the IMPACT reconstruction.

Protocol Algorithm Likeli- Bkgnd ROI Runtime
hood (iter.) (iter.) (min)

SpineSeq IMPACT Poisson 700∗ 700∗ 403
SpineSeq L-BFGS-B Poisson 348 225 96.2
SpineSeq L-BFGS-B Gaussian 117 162 49.3

InnerEarSeq IMPACT Poisson 700∗ 700∗ 404
InnerEarSeq L-BFGS-B Poisson 126 220 60.5
InnerEarSeq L-BFGS-B Gaussian 86 178 46.7

Table 1. Numerical performance, in terms of background and ROI
iteration counts, and total runtime.

reconstructions, as well as their calibration, are as mentioned in sec-
tion 3.1. The reconstruction is also forcibly interrupted once 700
iterations have been executed.

Figure 2 illustrates the reconstructions of the SpineSeq dataset
(higher SNR). The tube of interest is the small grey structure under
a tiny black bubble, in the middle of each image. It may be ob-
served that metal artifacts have been reduced, but not eliminated as
was reported for simulated projections. This is expected from the
incompleteness of the projection model with respect to other arti-
fact sources and data preprocessing. This aspect seems to be better
tolerated under Gaussian modeling of log-sinogram noise, as streak
artifacts from the metal balls appear weaker. Yet, close inspection
reveals that a better delineation of the tube is obtained with both
polychromatic reconstruction procedures.

Finally, Table 1 indicates the performance of each of these
approaches, for each dataset. Thanks to the ROI framework, the
iteration counts are reasonable (hundreds), except for IMPACT.
The robustness of the Gaussian uncertainty model with respect to
model inadequacy is underscored by its better performance over the
InnerEarSeq (low SNR) dataset as well as for the background
reconstructions, where the low-resolution attenuation map reduce
the accuracy of the sinogram formation model. Reconstruction

1455



100 200 300 400 500

200

250

300

350

400

450

(a) Scanner output (FBP).

100 200 300 400 500

200

250

300

350

400

450

(b) Regularized IMPACT (has not converged).

100 200 300 400 500

200

250

300

350

400

450

(c) L-BFGS-B to minimize the penalized Poisson log-likelihood.

100 200 300 400 500

200

250

300

350

400

450

(d) L-BFGS-B to minimize the penalized Gaussian log-likelihood.

Fig. 2. Reconstructions of the physical phantom, scaled to a
[−200, 200] HU window. The empty space around the phantom has
been cropped by hand.

with Gaussian modeling of log-sinogram uncertainty yields better
runtime efficiency on all accounts for both acquisition protocols.

4. CONCLUSION

We have presented improvements to the modeling and the imple-
mentation for penalized-likelihood CT reconstruction with a poly-
chromatic X-ray source model. These yield a significant decrease
of the reconstruction time, for an equivalent reduction of metal arti-
facts. Part of this enhancement is linked to improved robustness to
measurement uncertainty.

For future works, we consider the implementation of precondi-
tioning strategies for problem (2) to further improve numerical per-
formance. We also plan to extend our tools to 3D reconstruction, for
which our ROI framework reduces the large volume of projection
data to process.
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